
Containerization: Best Practices &
Advanced Topics

Peter Z. Vaillancourt
Computational Scientist

Center for Advanced Computing (CAC)
Cornell University

XCRI Engineer, XSEDE

Outline
Containerization: Best Practices & Advanced Topics

• Lifecyle of a Container
• Development vs. Production
• Example Container
• Reducing Container Sizes

• Deploying a Container
• In the Cloud
• On a Shared Resource

• Security
• Next Steps

• Reproducible Containers
• Container Orchestration

Containers for Development vs. Production
Lifecycle of a Container

1. Production: Containers as a software distribution method
• Portability of a consistent environment for users
• Easily distributed
• Highly accessible
• Pre-packaged software containers often require customization

Containers for Development vs. Production
Lifecycle of a Container

1. Production: Containers as a software distribution method
• Portability of a consistent environment for users
• Easily distributed
• Highly accessible
• Pre-packaged software containers often require customization

2. Development: Containers as a development environment
• Builds a consistent environment early, including dependencies
• Useful for teams of developers/researchers
• Larger if including dev tools
• Often requires cleanup for production

Containers for Development vs. Production
Lifecycle of a Container

Development Production

Containers for Development vs. Production
Lifecycle of a Container

Development
• Contains dependencies, code,

environment variables, etc.

• No real size limit: text editors, VNC,
data visualization, etc.

• Code is changed and updated

• Runs can be varied and versatile to
initiate

Production

Containers for Development vs. Production
Lifecycle of a Container

Development
• Contains dependencies, code,

environment variables, etc.

• No real size limit: text editors, VNC,
data visualization, etc.

• Code is changed and updated

• Runs can be varied and versatile to
initiate

Production
• Contains dependencies, code,

environment variables, etc.

• Should be as lightweight as possible: no
need for nice aesthetic features

• Code is static

• Requires a run script or easy
commands

Example Container: Radio Astronomy
Lifecycle of a Container

Example Container: Radio Astronomy
Lifecycle of a Container

• Started with a NANOGrav container: nanograv/nanopulsar
• Based on jupyter/datascience-notebooks (includes Python, R, and more)
• Wide variety of Radio Astronomy software and tools

https://hub.docker.com/r/nanograv/ipta-docker
https://hub.docker.com/r/jupyter/datascience-notebook/

Example Container: Radio Astronomy
Lifecycle of a Container

• Started with a NANOGrav container: nanograv/nanopulsar
• Based on jupyter/datascience-notebooks (includes Python, R, and more)
• Wide variety of Radio Astronomy software and tools

• After 1 year, needed to be updated: federatedcloud/nanopulsar
• Used for development with additions: federatedcloud/modulation_index

• ~11GB for just dependencies

https://hub.docker.com/r/nanograv/ipta-docker
https://hub.docker.com/r/jupyter/datascience-notebook/
https://hub.docker.com/r/cornellcac/ipta-docker-updated
https://github.com/federatedcloud/modulation_index/tree/master/docker

Example Container: Radio Astronomy
Lifecycle of a Container

• Started with a NANOGrav container: nanograv/nanopulsar
• Based on jupyter/datascience-notebooks (includes Python, R, and more)
• Wide variety of Radio Astronomy software and tools

• After 1 year, needed to be updated: federatedcloud/nanopulsar
• Used for development with additions: federatedcloud/modulation_index

• ~11GB for just dependencies
• Created a minimal container for production runs

• ~3GB for just dependencies
• Docker version: federatedcloud/docker-PRESTO
• Singularity version: federatedcloud/singularity-PRESTO

https://hub.docker.com/r/nanograv/ipta-docker
https://hub.docker.com/r/jupyter/datascience-notebook/
https://hub.docker.com/r/cornellcac/ipta-docker-updated
https://github.com/federatedcloud/modulation_index/tree/master/docker
https://hub.docker.com/r/cornellcac/presto
https://singularity-hub.org/collections/4510

Reducing Container Sizes
Lifecycle of a Container

• Docker Layers
• Base image

• CentOS 215MB
• Debian 114MB
• Ubuntu 73.9MB
• Alpine 5.57MB

• Certain commands add layers:
RUN, ADD, COPY

• 1 instruction = 1 layer
• Other commands create temporary layers
• Also see the Docker docs

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Reducing Container Sizes
Lifecycle of a Container

• Combining multiple commands
• Pip commands can use a requirements

file

Our requirements.txt, for example:

alembic
fitsio==0.9.11
requests_oauthlib
marshmallow
ephem
scikit-sparse
corner
numexpr
astropy
runipy
…

Reducing Container Sizes
Lifecycle of a Container

• Combining multiple commands
• Pip commands can use a requirements

file
• If using several RUN commands in a row,

it’s an opportunity to combine:

RUN wget -q https://bitbucket.org/psrsoft/tempo2/get/master.tar.gz && \
tar zxf master.tar.gz && \
cd psrsoft-tempo2-* && \
./bootstrap && \
CPPFLAGS="-I/opt/pulsar/include" LDFLAGS="-L/opt/pulsar/lib" ./configure -- prefix=/opt/pulsar --with-calceph=/opt/pulsar && \
make && make install && make plugins && make plugins-install && \
mkdir -p /opt/pulsar/share/tempo2 && \
cp -Rp T2runtime/* /opt/pulsar/share/tempo2/. && \
cd .. && rm -rf psrsoft-tempo2-* master.tar.gz

https://bitbucket.org/psrsoft/tempo2/get/master.tar.gz

Reducing Container Sizes
Lifecycle of a Container

• Combining multiple commands
• Pip commands can use a requirements

file
• If using several RUN commands in a row,

it’s an opportunity to combine

• Use multi-stage builds
• Leverages docker build cache

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Reducing Container Sizes
Lifecycle of a Container

• Combining multiple commands
• Pip commands can use a requirements

file
• If using several RUN commands in a row,

it’s an opportunity to combine

• Use multi-stage builds
• Leverages docker build cache

• Don’t install what you don’t need

• Multiple decoupled containers
(microservices)

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Best Practices for Uploading Containers
Deploying a Container

• Don’t upload
• Private data – very important for research
• Private or licensed software

• Do include
• Software licenses
• Documentation
• Software and dependencies
• Runscripts for production

• Use GitHub to connect your repo
• DockerHub
• SingularityHub

In the Cloud
Deploying a Container

Vaillancourt and Wineholt et al. 2020 PEARC20

• Will it work in the cloud?
• Moving from HPC adds complexity

• MPI
• May require container orchestration

• Data management

• Use Docker
• Public cloud providers offer managed services
• Container Orchestration options
• Ease of use

• Security

https://dx.doi.org/10.1145/3311790.3396659

On HPC Resources
Deploying a Container

• Simplifies getting started
• No need to install to your home directory
• No need to pester sysadmins to install your software

• Using Singularity on XSEDE
• It’s available and secure
• Bind mounts for easy data access
• Static container, no OverlayFS

• MPI major version in the container must match the host

• Job scripts and bind mounts may vary on different systems

Root Access
Security

• Use Singularity for sensitive systems

• Another option is Docker Rootless Mode
• Docker Docs on Rootless Mode
• DockerCon 2020 Talk on Rootless Mode

• Setup a user or users for shared Docker containers
(same as shared system)

https://docs.docker.com/engine/security/rootless/
https://youtu.be/uWURUtqLiqQ

Cloud VMs
Security

• Implement security at a Virtual Machine (VM) level
• Firewall
• Security Groups
• Limit ssh access

• For public images, pay attention to what they contain
• Look for the Dockerfile
• GitHub repo

Reproducible Containers
Next Steps

Vaillancourt and Coulter et al. 2020 arXiv:2006.14784

https://arxiv.org/abs/2006.14784

Container Orchestration
Next Steps

Vaillancourt and Wineholt et al. 2020 PEARC20

+

https://dx.doi.org/10.1145/3311790.3396659

Questions?

Thank you!

https://github.com/XSEDE/Container_Tutorial

Peter Vaillancourt
Computational Scientist

Center for Advanced Computing (CAC)
Cornell University

XCRI Engineer, XSEDE

https://github.com/XSEDE/Container_Tutorial

• Runtime metrics:
https://docs.docker.com/config/containers/runmetrics/

• Open Container Initiative (OCI) https://opencontainers.org/
“creating open industry standards around container formats
and runtimes”

Other Useful Links

https://docs.docker.com/config/containers/runmetrics/
https://opencontainers.org/

